| TT | C | |----|---------| | 1L | C_{L} | Name _ # Elements, Compounds & Mixtures Worksheet Part 1: Read the following information on elements, compounds and mixtures. Fill in | the blanks where necessary. | |--| | A pure substance containing only one kind of dtom. An element is always uniform all the way through (homogeneous). An element dannot be separated into simpler materials (except during nuclear reactions). Over 100 existing elements are listed and classified on the periodic table. | | A pure substance containing two or more kinds of <u>lements</u>. The atoms are <u>Chemically</u> combined in some way. Often times (but not always) they come together to form groups of atoms called molecules. A compound is always homogeneous (uniform). Compounds <u>Cannot</u> be separated by physical means. Separating a compound requires a chemical reaction. The properties of a compound are usually different than the properties of the elements it contains. | | Mixtures: Two or more elements or compounds NOT chemically combined. No reaction between substances. Mixtures can be uniform (called homogenous) and are known as solutions. Mixtures can also be non-uniform (called heterogeneous). Mixtures can be separated into their components by chemical or physical means. The properties of a mixture are similar to the properties of its components. | | Part 2: Classify each of the following as elements (E), compounds (C) or Mixtures (M). Write the letter X if it is none of these. | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Part 3: Match each diagram with its correct description. Diagrams will be used once. - E 2. Mixture of two elements two types of uncombined atoms present. - $\underline{\mathbb{B}}$ 3. Pure compound only one type of compound present. - <u>A</u> 4. Mixture of two compounds two types of compounds present. - \sum 5. Mixture of a compound and an element. **Part 4:** Column A lists a substance. In Column B, list whether the substance is an element (E), a compound (C), a Heterogeneous Mixture (HM), or a Solution (S). (Remember a solution is a homogeneous mixture.) In Column C, list TWO physical properties of the substance. | Column A | Column B | Column C | |---|----------|------------| | 1. Summer Sausage | HM | | | 2. Steam | C | \ | | 3. Salt Water | S | . \ \ | | 4. Pencil lead (Pb) | E | | | 5. Dirt | HM | | | 6. Pepsi | S | | | 7. Silver (Ag) | E | | | 8. Toothpaste (Na ₂ HPO ₄) | C | ~ 100 | | 9. A burrito | HM | 10 | | 10. Italian Dressing | HM | | | 11. Chicken Soup | HM | | | 12. Lemonade | S | | | INSTRUCTIONS: Write E in the blank if the material is <i>heterogeneous</i> or O if it is <i>homogeneous</i> . | | | | | | |--|------------------------------------|--|----------|--|--| | 1. Wood | | 6. Dirt | E | | | | 2. Freshly-brewed black coffee | | 7. Sausage-and-mushroom pizza | E | | | | 3. Water \ COMPOUND | X | 8. Air | 0 | | | | 4. Lucky Charms® | E | 9. Milk | 0 | | | | 5. Salt Compound | X | 10. Gold element | <u>X</u> | | | | INSTRUCTIONS: Classify each of the following | as an <i>element</i> [E], | a compound [C], or a mixture [M]. | | | | | 11. Gold | E | 16. Air | M | | | | 12. Water | <u> </u> | 17. Carbon dioxide | | | | | 13. Seawater | M | 18. Silver | E | | | | 14. Sugar | | 19. Ice | <u></u> | | | | 15. A chocolate sundae | M | 20. A Big Mac [®] | M | | | | INSTRUCTIONS: Classify each of the following properties of matter as <i>physical</i> [P] or <i>chemical</i> [C]. | | | | | | | 21. Color | <u>P</u> | 26. Reacts violently with chlorine | <u>C</u> | | | | 22. Density | P | 27. Good conductor of heat | P | | | | 23. Burns easily (flammable) | <u> </u> | 28. Dissolves readily in water | <u>C</u> | | | | 24. Not affected by acids | <u> </u> | 29. Melts at 145 °C | P | | | | 25. Boils at 450 °C | P | 30. Malleable | P | | | | INSTRUCTIONS: Classify each of the following | changes in matter a | as <i>physical</i> [P] or <i>chemical</i> [C]. | | | | | 31. Grinding chalk into powder | P | 36. Burning gasoline | <u>C</u> | | | | 32. Dissolving salt in water | P | 37. Hammering gold into foil | P | | | | 33. Dissolving zinc in acid | | 38. Melting ice | P | | | | 34. Tearing a piece of paper | P | 39. Digesting food | <u>C</u> | | | | 35. Stretching copper into wire | P | 40. Making hydrogen from water | C | | | | INSTRUCTIONS: Classify each of the following as an <i>intensive property</i> [I] or an <i>extensive property</i> [E]. | | | | | | | 41. Mass | E | 46. Color | | | | | 42. Density | 1 | 47. Volume | E | | | | 43. Melting point | 1 | 48. Length | E | | | NAME _____ # **Scientific Notation and Sig Figs** ### Scientific Notation Notes Write the following numbers in scientific notation 3. $$910$$ 9.1×10^2 Write the following values long hand 3. $$1.2 \times 10^2$$ Write the following calculator values in scientific notation and in long hand ### **Significant Figure Worksheet** 1. Using the rules given in class. State whether the underlined "O's" are significant or not. | Example | Significant? (Y/N) | Rule | |-------------------|--------------------|------------------| | 0.0082 <u>0</u> 1 | Y | mbtwn 2 sig. | | 76 <u>00</u> | N | place holders | | 76 <u>00</u> .0 | Y | in botwn 2 sig | | 82 <u>0</u> | N | place holders | | <u>0</u> .06 | N | place holder | | 3.005 <u>0</u> | X | terminating zero | | 0. <u>00</u> 870 | N | placeholder | # 2. State the number of significant figures in each number - a) 1234 4 - b) 0.023 2 - c) 890 _____2 - d) 91010 <u>4</u> - e) 9010.0 <u>5</u> - f) 1090.0010 <u>{</u> - g) 0.00120 <u>3</u> - h) 3.4 x 10⁴ 2 - i) 9.0 x 10⁻³ ____ - j) 9.010 x 10⁻² 4 - k) 0.00030 <u>2</u> - I) 1020010 <u>6</u> - m) 780. <u>3</u> - n) 1000 ____ - o) 918.010 <u>6</u> - p) 0.00390 <u>3</u> - q) 8120<u>3</u> - r) 7.991 x 10⁻¹⁰ 4 - s) 72 <u>2</u> 3. Perform the following operations. Be sure to record your answer with the correct number of significant figures a) $$334.54 \text{ grams} + 198 \text{ grams} = 532.54 = 5339$$ c) $$11.2 \text{cm} * 3.0 \text{ cm} * 4.556 \text{cm} = 153.0816 = 150 \text{ cm}^3$$ d) $$2.11 \times 10^3$$ joules / 34 seconds = 62 J/S e) $$0.0010 \text{ m} - 0.11 \text{ m} = \frac{-.109}{-.109} = \frac{-.11 \text{ m}}{-.109}$$ f) $$349 \text{ cm} + 1.10 \text{ cm} + 100 \text{ cm} = 450.1 = 450 \text{ cm}$$ g) $$450 \text{ meters} / 114 \text{ seconds} = 3.947 = 3.9 \text{ m} / \text{S}$$ k) $$56s-2.55s = 53.45 = 53.5$$ 4. Record the measurements with the correct number of significant figures 4.33 ps 12.68 cm