Binary Molecular Nomenclature - Bonding between two **nonmetals** - Unlike ionic bonding, there are no charges to balance and therefore multiple subscripts can be possible (ex. NO, NO₂, N₂O₂, etc) # Naming rules • When naming, use the following prefixes for the subscripts | 1- | mono | 6- | hexa | |----|-------|-----|-------| | 2- | di | 7- | hepta | | 3- | tri | 8- | octa | | 4- | tetra | 9- | nona | | 5- | penta | 10- | deca | - Change the second name to end in "-ide" - Do not use prefixes if the prefix on the first word is mono - ALWAYS use prefixes on the second name Ex. SO₂ is sulfur dioxide (since there is only one sulfur atom, you do not use the prefix mono) N₂O₂ is dinitrogen dioxide # **NEVER USE PREFIXES WHEN NAMING A METAL** Writing compounds: Use the prefixes to write the subscripts of the molecule, but do NOT reduce the subscripts | | | Try these: | | |----|-------------------------------|------------|------------------------------| | 1. | NO | • | 11. Nitrogen monoxide | | 2. | P ₂ O ₅ | | 12. Diphosphorus pentoxide | | 3. | CF ₄ | | 13. Carbon tetrafluoride | | 4. | SO ₂ | | 14. Sulfur dioxide | | 5. | CCI ₄ | | 15. Carbon tetrachloride | | 6. | СО | | 16. Carbon monoxide | | 7. | N_2O_4 | | 17. Dinitrogen tetraoxide | | 8. | PCI ₅ | | 18. Phosphorus pentachloride | | 9. | SO ₃ | | 19. Sulfur trioxide | | 10 | . SiO ₂ | | 20. Silicon dioxide | ### **Polyatomic Ions** • Polyatomic ions are groups of atoms covalently bonded together that act as a single ion Polyatomic ions you need to know (including charges!!): Ammonium: NH₄⁺ • Nitrate: NO₃ Hydroxide: OH⁻ • Bicarbonate: HCO₃ • Permanganate: MnO₄ Acetate: C₂H₃O₂ • Sulfate: SO_4^{2-} • Carbonate: CO₃²⁻ Phosphate: PO₄³⁻ #### Writing names - Name the cation and then the anion - If the polyatomic ion is an anion, simply name the polyatomic ion without the -ide ending - Ex: NaNO₃ - There are more than two capital letters so it must have a polyatomic ion. - Name: Sodium nitrate - Ex: Al₂ (SO₄)₃ - o Name: aluminum sulfate - Ex: (NH₄)₃PO₄ - o Name: ammonium phosphate #### Writing the formula - Use the same rules as other ionic compounds. The rules of binary compounds and transition metals still apply. - Ex: Iron (II) sulfate - o Iron has a +2 charge, sulfate as a -2 - o Formula: FeSO₄ - Ex: Iron (III) sulfate - o Iron has a +3 charge, sulfate has a -2 - Crisscross to get Fe₂SO₄₃ - o Wait! You cannot have 43 oxygen atoms, so you must use parentheses - o Formula: Fe₂ (SO₄)₃ #### Try these | 1. | Sodium nitrate | 11. NaNO₃ | |----|--------------------------|---| | 2. | Aluminum phosphate | 12. AIPO ₄ | | 3. | Potassium phosphate | 13. K ₃ PO ₄ | | 4. | Ammonium sulfide | 14. (NH ₄) ₂ S | | 5. | Chromium (III) carbonate | 15. Cr ₂ (CO ₃) ₃ | | 6. | Magnesium hydroxide | 16. Mg(OH) ₂ | | 7. | Cobalt (II) carbonate | 17. CoCO ₃ | | 8. | Iron (II) hydroxide | 18. Fe(OH) ₂ | | 9. | Ammonium carbonate | 19. (NH ₄) ₂ CO ₃ | | 10 | . Zinc phosphate | 20. Zn ₃ (PO ₄) ₂ |