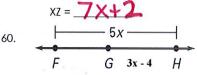
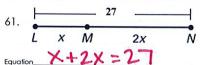

Geometry - Ch. 1 Review	Name:				
MATCHINGAnswers will be used more than once		A Calling or			
1. E Like a dot. Indicates a location.	13 Segments with the same length are	A. Collinear B. Coplanar			
2. Plat, goes forever in all directions.	14. Two little segments add up to the big	C. Line			
3. Has two endpoints. A piece of a line.	segment. 15. K Two little angles add up to the big	D. Plane			
4. C Straight, goes forever in two directions.	angle. 16. P Angle that measures exactly 90°	E. Point			
-		F. Ray(s)			
5 Starts at one point and goes forever in <u>one</u> direction.	N.I.	G. Segment H. Congruent			
6 Two points determine a	18 Angle that is more than 90° but less than 180°	I. Parallel			
7. Three non-collinear points determine a	19. Angle that measures exactly 180°	J. Segment Addition			
8. Points on the same line are	20 Unit of measure to measure angles	Postulate			
	21 Instrument used to measure angles	K. Angle Addition			
9. Points on the same plane are	22 The sides of an angle are called	Postulate L. Acute			
10 Two lines intersect in a		M. Degree			
11 C. Two planes intersect in a		N. Obtuse			
11 Two planes intersect in a	100	O. Protractor			
12 Two lines that never intersect are	1	P. Right			
		Q. Straight			
Fill in the blank with the correct word. 23. How many endpoints are on a line? Zero on a segment? 2 on a ray? on a plane? Zero on a plane?					
24. Do we ever use three letters to name a segment, line or ray? No @Carefulthis is a common error on the test!					
25. When naming a ray, which letter always goes first? endpoint					
26. How many lines can you draw through <u>one</u> point? <u>infinit</u> picture: 27. What about <u>two</u> points? picture:					
Use the diagram to name the following. Use proper notation! 28. In the diagram, name two different rays that go through point A					
29. Now, state two different ways to name the ray having <u>endpoint</u> A A B C					
30. List three points B, C 31. How many points are on this line? 3					
32. List three different segments ABBCAC 33. Name the longest segment AC					
34. List three different ways to name this line AB AC BC					
35. Use the next picture to name the plane two di	35. Use the next picture to name the plane two different ways Plane P, Plane ABC				
36. List three points on this plane A, B, C 37. How many points are on this plane? 3 given (infinite pts on a					
Use the diagram to determine if these are the same. Answer yes or no. M A N					
38. \overline{MA} and \overline{AN} \cancel{No} 39. \overrightarrow{AN} and \overrightarrow{MA} \cancel{No} 40. \overrightarrow{MA} and \overrightarrow{AM} \cancel{Yes} 41. \overrightarrow{NA} and \overrightarrow{NM} \cancel{Yes}					
Use the diagram to name the intersection of each pair of lines.					
42. \overrightarrow{DB} and \overrightarrow{EF} $\stackrel{\textbf{C}}{=}$ 43. \overrightarrow{FG} and \overrightarrow{CD} $\stackrel{\textbf{B}}{=}$ 44. \overrightarrow{ED} and \overrightarrow{CF} $\stackrel{\textbf{E}}{=}$ 45. \overrightarrow{BF} and \overrightarrow{ED} $\stackrel{\textbf{None}}{=}$					
46. The name for two coplanar lines that do not intersect is Parallel Are B, C and D collinear? YesC, F, D? No					
Use the diagrams to name the intersection of each 47. R and S <u>line Q</u> 48. U and T <u>line d</u> 49. R and	nd The 50. Rand U None 8 3 5	<u></u>			
51. Since R and U don't intersect, they are called parallel					
52. In the next picture, the plane that contains lines a and b is					
53. The intersection of planes P and S line a w w					
54. How many points are in the intersection of these planes? 3Are K, F, Q, and D coplanar? No					

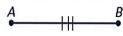

Use the Segment Addition Postulate to find each length.

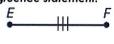


58.
$$R 7x - 8 S 2x - 4 T$$

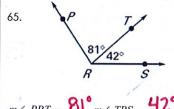
$$RT = \frac{9x-12}{}$$

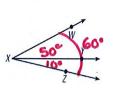
Use the Segment Addition Postulate to write an ALGEBRAIC EQUATION. Then, solve the equation for x.




Use the pictures to match two PAIRS of congruent segments. Use the correct notation to write a congruence statement.

64. Congruence statement pairs:



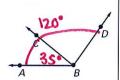


Given the picture, state the measure of each angle or write the measure in the proper location on the diagram.

67.

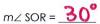
$$n \angle YXZ = 10^{\circ}$$

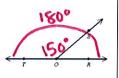
 $m \angle YXZ = 10^{\circ}$ $m \angle WXY = 50^{\circ}$ $m \angle WXZ = 60^{\circ}$


$$m \angle 1 = 110^{\circ}$$
 $m \angle 2 = 70^{\circ}$
 $m \angle 3 = 110^{\circ}$ $m \angle 4 = 70^{\circ}$

Find the measure of each angle using addition or subtraction.

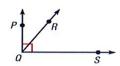
69.
$$m \angle RSP = 20^{\circ}$$
 $m \angle PST = 30^{\circ}$
 $m \angle RST = 50^{\circ}$


70. m∠ ABD = 120° $m\angle ABC = 35^{\circ}$


 $m \angle CBD = 85$

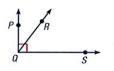
71. m∠ TOS = 150°

$$m \angle TOR = 180^{\circ}$$



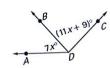
72. *m*∠ EFH =15°

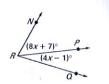
$$m \angle PQS = 90$$


73. *m*∠ PQR = 23°

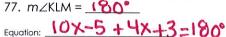
74. $m \angle ROS = 57^{\circ}$

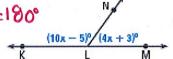
$$m \angle PQS = 90^{\circ}$$


$$m \angle PQR = 33^{\circ}$$


 $m \angle HFG = 65$

Now write an ALGEBRAIC EXPRESSION for the given angle.


75. m \ ADC = 18x+9



76. $m \angle NRQ = 12x + 6$

Now write an ALGEBRAIC EQUATION for the given angle and solve.

78. $m \angle VRS = 90^{\circ}$ Equation: $x - 4 + 3x + 2 = 90^{\circ}$

x= 23

$$m \angle VRT = 19^{\circ} m \angle TRS = 71^{\circ}$$

80. 81. What is the intersection of plane HGY and Which statement about the figure is true? Name three points that are collinear. plane HFX? (A) HZ (B) HZ 80. C Point H $oldsymbol{A}$ Lines x and y intersect at point A. (D) Plane EFH \bigcirc G, H, and I (\mathbf{B}) H, G, and JB Points A, B, and C are collinear. 81. \overrightarrow{EC} and \overrightarrow{ED} are opposite rays. (\mathbf{C}) F, G, and I \bigcirc G, J, and IB **D** Another name for \overline{AE} is \overline{AB} . Name the acute angles in the given figure. 82. 82. 84. What is the length of \overline{XZ} ? (5x + 7)(A) 3 83. C (B) 12 If $m \angle MPN = 85^{\circ}$, what is x? \triangle $\angle CAD$ and $\angle DAE$ (C) 24 (A) 5 B 6 \bigcirc $\angle BAC$ and $\angle FAE$ 84. (C) 7 (D) 20 C ∠BAF and ∠CAE (D) 25 B (E) 21 \bigcirc $\angle BAD$ and $\angle FAD$ **E**) 114 85. 85. Which line is *not* drawn? 86. Which points are collinear? 87. What is the intersection of \overrightarrow{AC} and \overrightarrow{BD} ? (A) AE (B) EC \bigcirc A, E, C (B) F, D, EA AC (B) EC C D C BD $\bigcirc \overrightarrow{FD}$ (C) A, E, D $\bigcirc D, E, C$ E) E 86. (E) AC (E) G, B, E87.

Geometry - Ch. 2 Review

Fill in the blank with the missing term.

1. Two angles that add up to 180°. Supplementary angles

2. Ray that divides an angle into two congruent angles. anale bisector

3. A segment, line, ray or plane that intersects a segment at its midpoint. Segment bisector

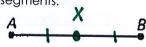
4. The point right in the middle of a segment. midpoint

5. Two angles that add up to 90°. complementary angles

6. Two angles that make a straight line. linear pair

7. Angles next to each other that share a common side and vertex. adjacent angle

8. Angles across from each other that are always equal. Vertical angles


9. When a conclusion is reached based on FACTS. Deductive reasoning

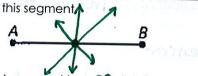
10. When a conclusion is reached based on a PATTERN. Inductive reasoning

Terms:

Complementary Angles Supplementary Angles Midpoint Adjacent Angles Segment Bisector Angle Bisector Linear Pair Vertical Angles Inductive Reasoning Deductive Reasoning

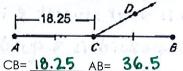
11. Draw the midpoint of \overline{AB} and label it X, then name the resulting congruent segments.

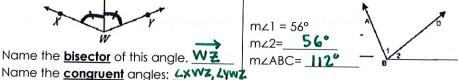
The congruent segments are: AX, XB A segment has ____ midpoint(s).


12. M is the midpoint of \overline{JK} . Write an equation, solve for x, and find the indicated lenaths.

x= 12 JM= 100 MK= 100 13. Use the Midpoint Formula to find the coordinate of the midpoint. (-7, 5) and (5, 3)

Midpoint: [-1, 4]


14. Draw and label three bisectors of


A <u>segment</u> has objectors

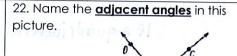
17.

15. Notice the bisector and corresponding tick marks. Find the indicated lengths.


18. BD bisects ∠ABC

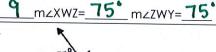
16. Notice the bisector and corresponding tick marks. Find the indicated lengths. AC = 150 yards

19. YA bisects ∠XYZ



20. Given that \overrightarrow{BD} is the bisector of ∠ABC, write an ALGEBRAIC EQUATION and solve.

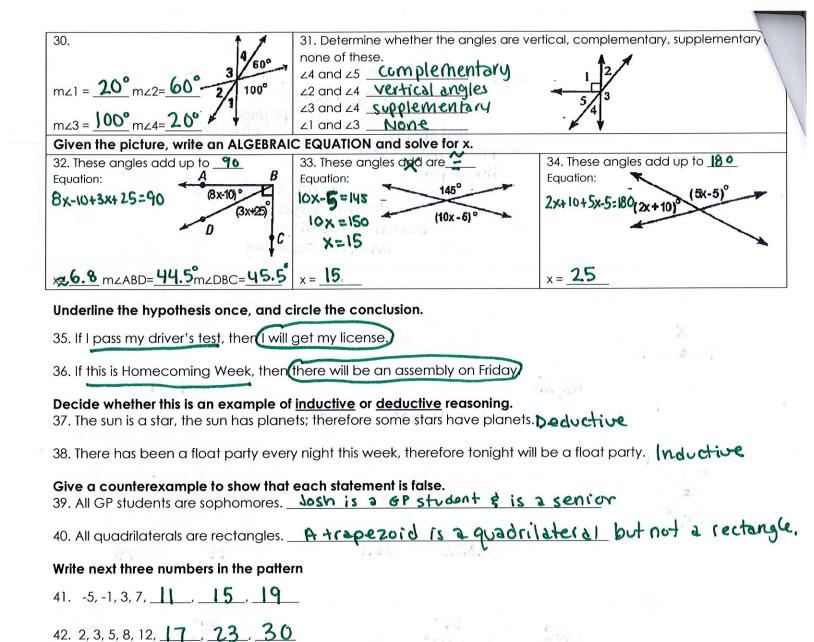
Name the **bisector** of this angle. **W**Z



21. Given that \overrightarrow{WZ} is the bisector of ZXWY, write an ALGEBRAIC EQUATION and solve.

x= 9 mzXWZ= 75° mzZWY= 75°

26.


These angles add up to 186° mz1= 154°

28. mz1= 120° mz2= 60° mz3= 120° These angles add up to $\frac{90}{m}$ mz1= $\frac{48}{}^{\circ}$

m23= 80° m24= 40°

27.

mz1=_15° These angles are

43. Conditional: If a quadrilateral has four right angles, then it is a rectangle.

What can you conclude from the true

Therefore, It will shrink

44. If you wash your cotton t-shirt in hot water,

It will shrink. You wash your cotton t-shirt in hot water.

46. Multiple Choice: What is the next figure in this pattern?

Statements below?

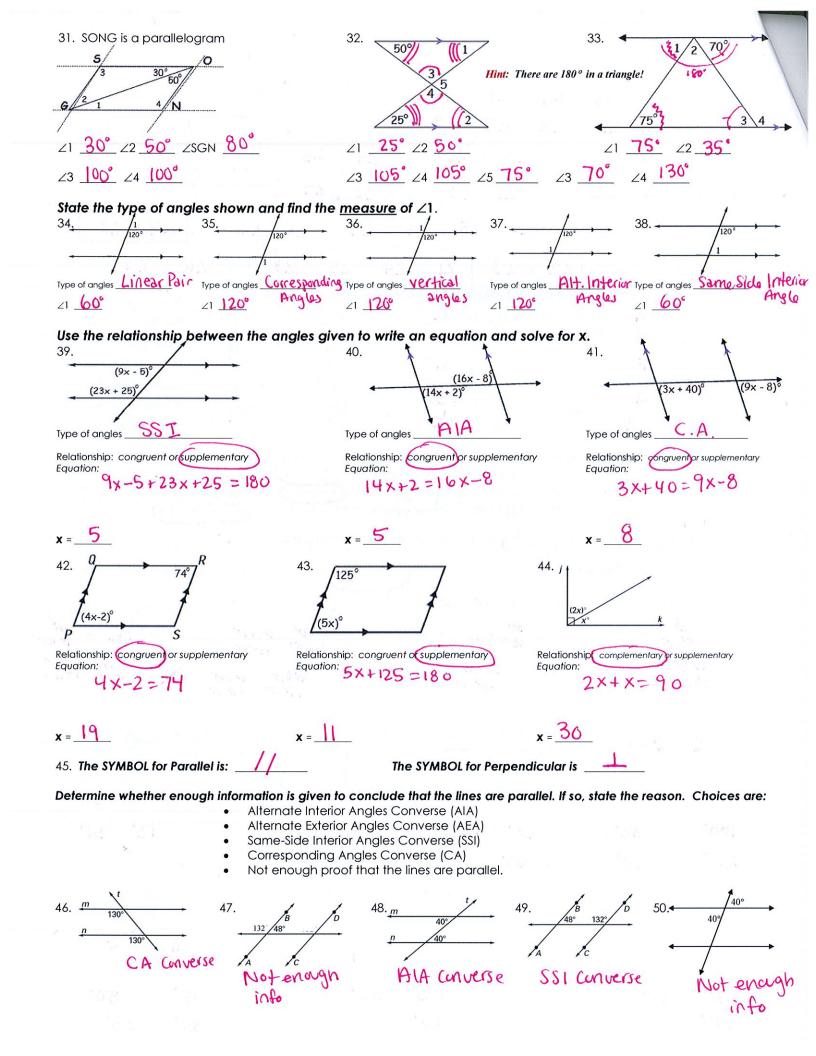
Converse: If a quadrilateral is a rectangle then it has 4 right angle (rue) or False

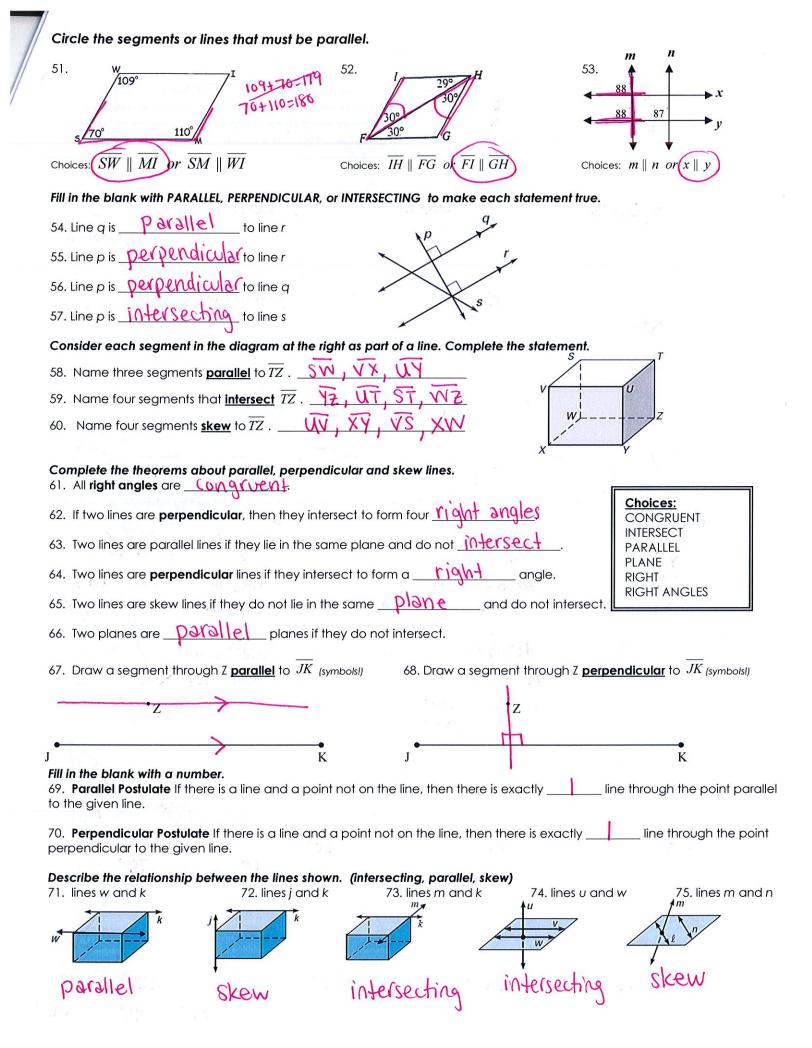
Contrapositive: If a quadrilateral is NOT a rectangle, then it Does NOT have 4 right (rug) or False

angles

Write a single if-then statement that follows from the

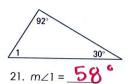
If the ball is thrown at a window, then the window will break

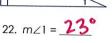

pair of true statements below.


45. If the ball is thrown at a window,

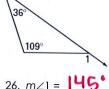
it will hit the window. If the ball hits the window, then the window will break.

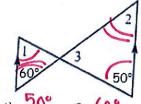
Inverse: If a quadrilateral DOES NOT have 4 right angles, then it NoT a rectangle

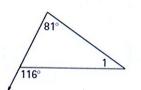

Geometry - Ch. 3 Review Name State the following using the picture. Don't forget to use angle symbols! 1. Four interior angles _ 43 , 44 3. Two pairs of alternate interior angles 43 & L6 L2 & L7 41 868 4. Two pairs of alternate exterior angles and & L5 L2 & L6 44 8 T8 5. Four pairs of corresponding angles and L2 & L6 & L7 6. Four pairs of vertical angles Choose the letter that shows the correct relationship between the angle pairs. A. alternate interior 7. $\angle 3$ and $\angle 9$ 8. $\angle 1$ and $\angle 12$ B. same-side interior 9. $\angle 8$ and $\angle 13$ $\bigcirc 8$ 10. ∠2 and ∠10 E C. alternate exterior D. same-side exterior 11. $\angle 5$ and $\angle 7$ 12. $\angle 6$ and $\angle 16$ E. corresponding 13. $\angle 1$ and $\angle 2$ 14. $\angle 5$ and $\angle 13$ F. vertical 13 14 15. \angle 10 and \angle 16 \triangle 12 16 15 16. \angle 13 and \angle 15 G. linear pair Describe the relationship between the pairs of angles by circling the word that makes the sentence true. 17. If lines are parallel, thenthe alternate interior angles are: congrued supplementary the corresponding angles are: congruent supplementary the same side interior angles are: congruent supplementary 18. Vertical angles are always congruent supplementary even if the lines are not parallel. 19. Angles that are a linear pair are always congruent supplementary even if the lines are not parallel. Find the measure of all the angles shown in the picture. 24. 25. JKLM is a parallelogram 90° This is a trapezoid. /1 150 ZK 60° ZL 120° 11 42° 12 51° ∠2 30° ∠H 90° ∠F 130° ∠M 60° ∠3 120° ∠4 60° 28. ROCK is a parallelogram 29. STAR is a parallelogram 30. PLAY is a parallelogram 125 15 130° ZR 125° ZA 55° _130° ∠C 50° 15° ZPLA 50° ∠K 130° ∠2 <u>35°</u> ∠3 35°

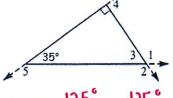


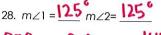
Geometry Chapter 4 Review Name: MATCH each type of triangle with its definition. Equilateral Triangle 1 Equiangular Triangle _____ A. Triangle with one right angle. E. Triangle with one obtuse angle. Isosceles Triangle Acute Triangle D B. Triangle with all (3) equal sides. F. Triangle with two equal sides. Scalene Triangle Right Triangle ______ C. Triangle with all (3) equal angles. G. Triangle with **no** equal sides. Obtuse Triangle D. Triangle with three acute angles. Classify the triangle by its sides. 1. scalene 18050065 Classify the triangle by its angles. 5. 7. reluphosiups obtuse 68 Classify the triangle by its angles AND sides. 11. 12. 70°70 Sides: equilateral sosceles scalene Sides: equilateral isosceles scalene Sides: equilateral isosceles scalene Sides: equilateral isosceles scalene Angles: acute obtuse equiangular right Angles: acute obtuse equiangular right Angles: acute obtuse equiangular right Angles acute obtuse equiangular rt. Identify the side opposite each angle. Use the picture to name the following. Name the equal sides and equal angles in each picture. 13. Side opposite $\angle X$: $Y = \mathbb{Z}$ Side opposite $\angle Y$: X^2 Legs AB. BC Base AC Equal sides: Side opposite ∠Z: Vertex angle <u>LB</u> Base angles <u>LA</u>, <u>LC</u> Equal angles: <u>LC, LD</u> Equal angles: <u>LB</u> Using \triangle ABC, name the following. The <u>sum</u> of the interior angles is <u>180°</u> degrees. 17. The interior angles of this triangle are 18. The <u>exterior</u> angle of this triangle is ______ The <u>adjacent interior</u> angle (next to the exterior angle) is _ 19. The exterior and the adjacent interior angle add up to 180° degrees. The remote interior angles shown are 20. The **<u>sum</u>** of the remote interior angles is equal to


Find the measure of each angle.

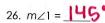






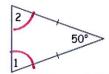


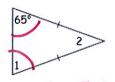
24. m∠1= 50° m∠2= 60° m∠3=**70°** <u>Each</u> angle in an equiangular triangle is <u>60°</u> degrees.

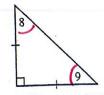


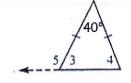
27. m∠1= 35

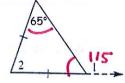
 $m \angle 3 = 55^{\circ} m \angle 4 = 90^{\circ} m \angle 5 = 145^{\circ}$

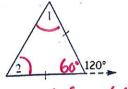




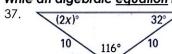

30. **x** = 9


31. $m \angle 1 = \frac{65}{m} m \angle 2 = \frac{65}{m}$

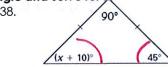

32. $m \angle 1 = 65^{\circ} m \angle 2 = 50^{\circ}$


33. m28 = 45° m29 = 45°

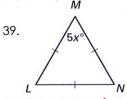
34.
$$m \angle 3 = \frac{70^6}{m} m \angle 4 = \frac{70^6}{m}$$

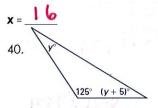


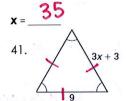
35. $m \angle 2 = 50^{\circ} m \angle 1 = 15^{\circ}$

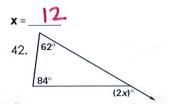


36. $m \angle 1 = 60^{\circ} m \angle 2 = 60^{\circ}$


Write an algebraic equation for each triangle and solve for x


Equation: 2x=32

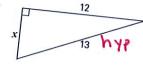

Equation: X+10 = 45


Equation: 5 x = 60

Equation: y+125+(y+5) = 180

Equation: 3x+3=9

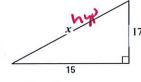
Equation: 2x = 62+84


$$y = 25$$

✓ State the Pythagorean Theorem: Q2+b2=c2 What is it used for? Finding Sides of RIGHT triangles

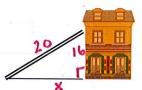
Use the Pythagorean Theorem to find the following missing side. An equation must be given! Round decimals to the nearest 100th.

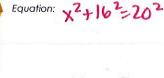
Equation: 102+242= x2



Equation: $\chi^{2} + 12^{2} = 13^{2}$

Equation:


Equation:

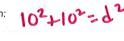


Equation: 15²+17²= X²

49. A 20-foot ladder is leaning against a wall. It reaches up the wall 16 feet.

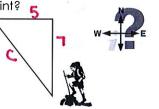
How far is the bottom of the ladder from the wall?

50. A 26-ft wire is attached to an electrical pole. The wire attaches to a stake on the ground. If the stake is 10 feet from the base of the pole. How tall is the pole?


h2+102=262

X=12f+

51. Find the length of the diagonal of a square if each side 10



Equation: 102x102=22

52. Mary hikes 7 km north and 5 km west. How far is she from her starting point?

d =14.14cm

C=8.6km

Can the given side lengths make a right triangle. Circle yes or no. You MUST support your answer with an equation!

53. 4 ft 9 ft, 7 ft Equation:

42+72-92

54. 10 in 26 in, 24 in. Equation:

102+242=262

55. 20 cm 16 cm, 12 cm

Equation: 122+162=202 56. 20 in 28 in., 21 in. Equation:

202+212=282

yes or no

676=676

400=400

Given the Pythagorean Triple, state THREE OTHER MULTIPLES that are also Pythagorean Triples.

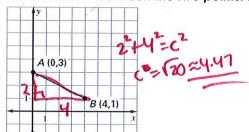
57. 3, 4, 5

X2) 6,8,10

v3)9,12,15

(4) (2,16,20

10,24,26 x3 15,36,39


(44) 2948,52

59. 8, 15, 17 (2) \A,30,34

24,45,51

(XY) 32, 60,68

Find the DISTANCE between the two points. Round your answers to the nearest 100th, if necessary.

B (4,3) A (2.1)

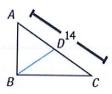
22+22=02

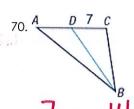
62. (-2, 1) and (3, 2) $d = \sqrt{(x-x)^2 + (y-y)^2}$ d= V(3-(-2))2+(2-1)2

63. (-1, 2) and (3, 0) d= (3-(1))2+(0-2)2

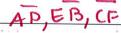
d=126≈51

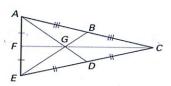
d=120 ~ 4.47

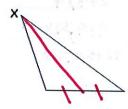

Matching:


- 64. A segment from a vertex to the *midpoint* of the opposite side *median*
- 65. A segment from a vertex **perpendicular** to the opposite side **altitude**
- 66. A segment from a vertex that bisects the corner angle angle bisector
- 67. Cuts a segment in half and makes a 90° angle perpendicular bisector
- A. Altitude
- B. Angle Bisector
- C. Median
- D. Perpendicular **Bisector**

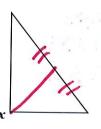
BD is a <u>MEDIAN</u> of \triangle ABC. Find each length.


68.



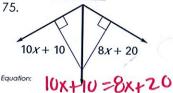


71. The **medians** on this picture are segments:



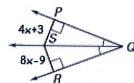
Draw and <u>label</u> the <u>MEDIAN</u> from vertex X.

73.

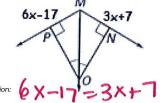


Fill in the blank.

74. If a point is on the <u>angle bisector</u>, then it is <u>equidistant</u>

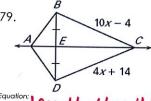

from the two sides of the angle.

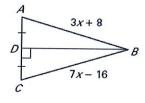
Write an equation and solve for x.


x = 5

76.

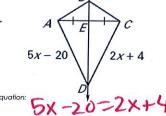
Equation: 4x+3=8x-9


$$x = 3$$
 PS = 15 RS = 16


78. If a point is on the perpendicular bisector of a segment, then it is equid is tent from the endpoints of the segment.

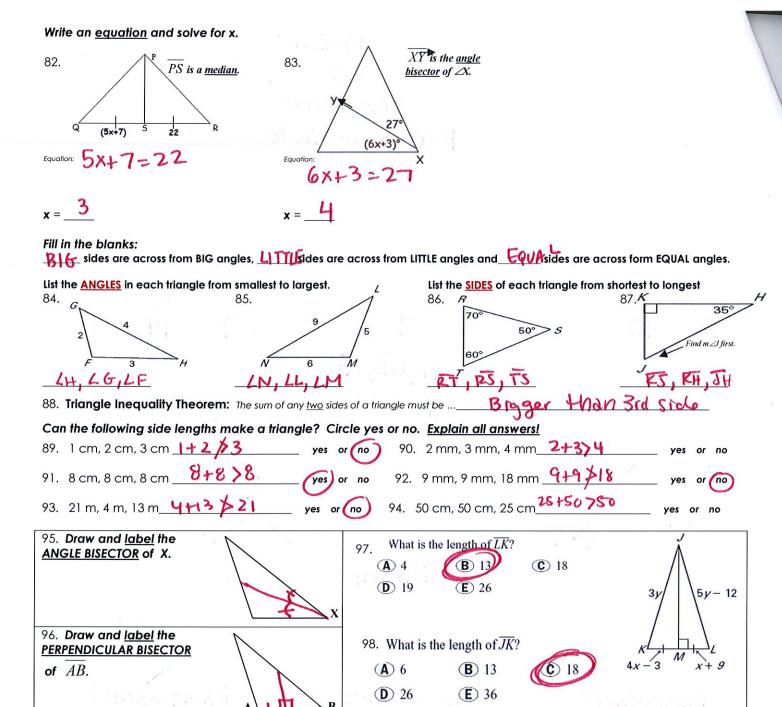
Write an equation and solve for x.

79.



80.

3x+8=7x-16


81.

$$x = 3$$
 BC = 26 DC = 26

$$x = 6$$
 AB = 26 CB = 26

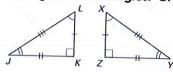
$$x = 8$$
 AD = 20 CD = 20

Geometry Ch. 5 REVIEW

Name

1. What does it mean for two triangles to be congruent? Corresponding Sides \$

Study the picture to name all the pairs of corresponding sides and angles. Order of the letters matters!


2. Pairs of Corresponding <u>Sides</u> Pairs of Corresponding <u>Angles</u>

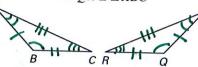
$$\overline{DE} \cong \underline{S7}$$

$$\angle E \cong LT$$

Congruence Statement: $\Delta ECD \cong \Delta$ **TRS**

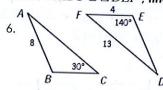
3. Pairs of Corresponding <u>Sides</u> Pairs of Corresponding <u>Angles</u>

$$\overline{XZ} \cong \overline{\overline{IR}}$$
 $\overline{YX} \cong \overline{\overline{JL}}$


$$\angle X \cong \ \ \angle L$$
 $\angle Y \cong \ \ \ \angle S$

∠Z≅ LK

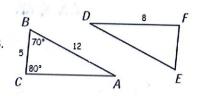
$$\overline{ZY} \cong \overline{JK}$$


Congruence Statement: $\Delta Z\!X\!Y\cong \Delta$ _ KL $\mathfrak T$

4. Mark each pair of corresponding angles and corresponding sides to show the congruen $\Delta PQR \cong \Delta ABC$

5. CPCTC stands for: Corresponding Parts of Congruent Triangles are Congruent

Given $\Delta \, ABC \cong \Delta \, DEF$, find the missing length or angle measure.



Hint: How many degrees

Hint: How many degree are in a triangle

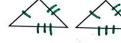
 $\overline{DE} = 8$ $\overline{BC} = 4$ $\overline{AC} = 13$

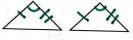
$$DE = \underbrace{B}_{BC} = \underbrace{H}_{AC} = \underbrace{13}_{DE}$$

$$m \ge B = \underbrace{140}_{m \ge F} = \underbrace{30}_{m \ge A} = \underbrace{100}_{m \ge A} = \underbrace{100}_{m \ge B} = \underbrace{100$$

 $\overline{EF} = 5$ $\overline{ED} = 12$ $\overline{CA} = 8$ m/D = 30° m/F = 80° m/E = 70°

Mark the triangles to correspond to each postulate:

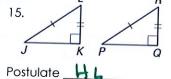

10. SAS


11. ASA

12. AAS

13. H-L

17.



Name the postulate which could be used to show the triangles are congruent. Don't forget to mark "free" sides and angles! Fill in the congruence statement where indicated. Choices are: SSS, SAS, ASA, AAS, H-L or none.

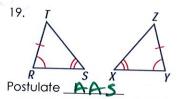
Postulate SSS

 $\Delta MON \cong \Delta$ PRQ

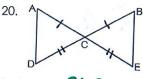
 $\Delta PQR \cong \Delta JKL$

16.

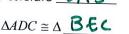
Postulate ASA

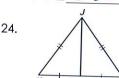

 $\Delta LJK \cong \Delta$ PMN

 $\Delta FED \cong \Delta$ **BCA**

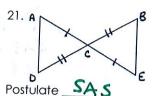

18.

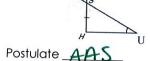
Postulate None


 $\Delta STR \cong \Delta$

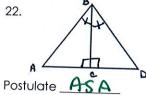


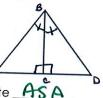
 $\Delta ZYX \cong \Delta TRS$


Postulate SA-S



Postulate SSS

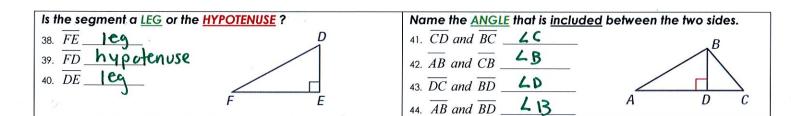

 $\Delta KJM \cong \Delta L JM$


 $\triangle ADC \cong \triangle EBC$

 $\Delta UHS \cong \Delta TNS$

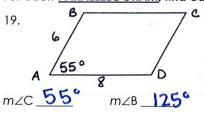
 $\triangle ABC \cong \Delta$ DBC

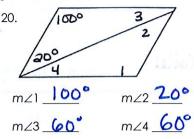
 $\Delta PQR \cong \Delta RSP$

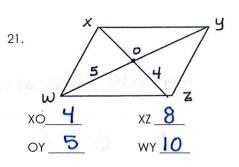

Postulate

23. P

26. $AB \cong MN$; $\angle A \cong \angle M$	$27. AB \cong MN \; ; \; \angle A \cong \angle N$			
and $\angle B \cong \angle N_0$	and $\angle C \cong \angle O$	and $BC \cong NO$	and $\angle B\cong$	NN
Postulate ASA	Postulate AAS	Postulate SSS	Postulate	SAS
Using the given information and m 30. $\overline{BC} \cong \overline{YZ}$; $\angle C \cong \angle Z$ AAS F Pair of sides or angles needed A 33. $\overline{BC} \cong \overline{EC}$; SAS Postulate (Hint: Mark "free" angles!)	Postulate 31. \overline{BC} A Poir of sides	onal information needed to prove $\cong \overline{YZ}$; $\angle C \cong \angle Z$; SAS Postular or angles needed $\nearrow Z$ ASA Postulate		LB & LY
Pair of sides needed $\overrightarrow{AC} \Leftrightarrow \overrightarrow{CD}$ 36. $\overrightarrow{AB} \cong \overrightarrow{XY}$; SAS Postulate (Hint: Mark given sides each solution has a gas and solution	Pair of angles needed_ (TWO solutions) pair of sides and a pair of angles.)	1.0017	Pair of sides needed BC & Y	XY Z
Pairs of sides needed ACXXX Pairs of angles needed AXX	X III Z		f sides needed BC \$ 72 f angles needed LB \$ 4	Z
37. $AB \cong XY$; AAS Postulate (Hint: Mark given angles each solution has a ONE WAY:	(TWO solutions) a pair of sides and a pair of angles.)	THE "OTHER WAY":	f angles needed $\frac{y}{\sqrt{8}}$	Ž _z

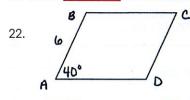

Mark the pictures first and then state what postulate proves the triangles congruent. Choices: SSS, SAS, ASA, AAS, H-L or none.

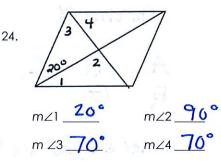



Pairs of angles needed_

Cooperative Provinces Ch. (Name
Geometry Review - Ch. 6 For each of the following shapes, state the definition, draw a p	Name sicture, and choose the letter that corresponds to the
properties. Parallelogram	
Definition: opposite sides are parallel	
Picture:	CHOICES FOR PROPERTIES:
CAN	A. Opposite sides are congruent
Properties: 1. A 2. B 3. C 4. D	B. Opposite angles are congruent
Rhombus	C. Consecutive angles are supplementary
Definition: All sides =	D. Diagonals bisect each other
Picture:	E. Diagonal bisect the corner angles
Properties: 1. A 2. B 3. C 4. D	F. Diagonals are congruent
	G. Diagonals are perpendicular
5. <u>E</u> 6. <u>G</u>	1100 AVA 6011
Rectangle	Square
Definition: <u>Corner angles are 90°</u>	Definition: All sides =, all angles = 90°
Picture:	Picture:
Properties: 1. A 2. B 3. C 4. D	Properties: 1. <u>A</u> 2. <u>B</u> 3. <u>C</u> 4. <u>D</u>
5. F	5. E 6. F 7. G
Trapezoid	Study the Venn Diagram which relates all of these quadrilaterals
Definition: exactly 1 pair of parallel sid	es parallelogram
Picture:	
An <u>isosceles</u> trapezoid has <u>\$\frac{1}{2}\$ legs</u>	rhombus rectangle
The base angles of an isosceles trapezoid are	
≥	square
To find the length of the midsegment , you <u>3 dd</u> the bases	
together and divide by $\frac{1}{2}$.	
Answer true or false.	5 4 5
1. Every rectangle is a square 2.	Every square is a rectangle
3. Every parallelogram is a rhombus 4.	Every rhombus is a rectangle
5. Every square is a quadrilateral 6.	Every square is a rhombus
7. The diagonals of a rectangle are perpendicular	8. The diagonals of a square are perpendicular T
O. The discount of the state of	10. The diagonals of a sharehold are a second.
9. The diagonals of a rectangle are congruent	10. The diagonals of a rhombus are congruent
11. The opposite sides of a parallelogram are congruent 12.	The opposite angles of a parallelogram are supplementary
13. The diagonals of all parallelograms bisect each other	14. The diagonals of all parallelograms are congruent
Part Colony Cons	Elyamotoris, Square
Name the following segments or angles in the trapezoid. Use t	he correct notation!
15. Two Bases: BC, AD 16. Two Legs: AB, CO	x/
17. Midsegment: 18. Two pairs of Base Angles:	LA, LD & LC, LB

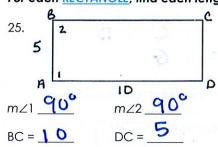
For each PARALLELOGRAM, find each length or measure.

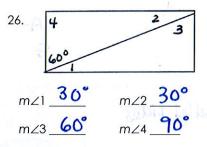


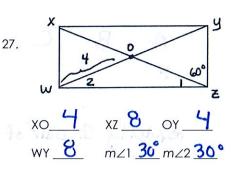


For each **RHOMBUS**, find each length or measure.

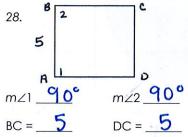
DC = _ 6

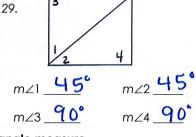


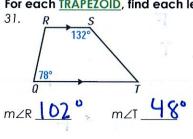

BC = 8

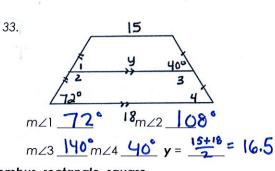


$$m \angle C \underline{40^{\circ}}$$
 $m \angle B \underline{140^{\circ}}$ $DC = 6$

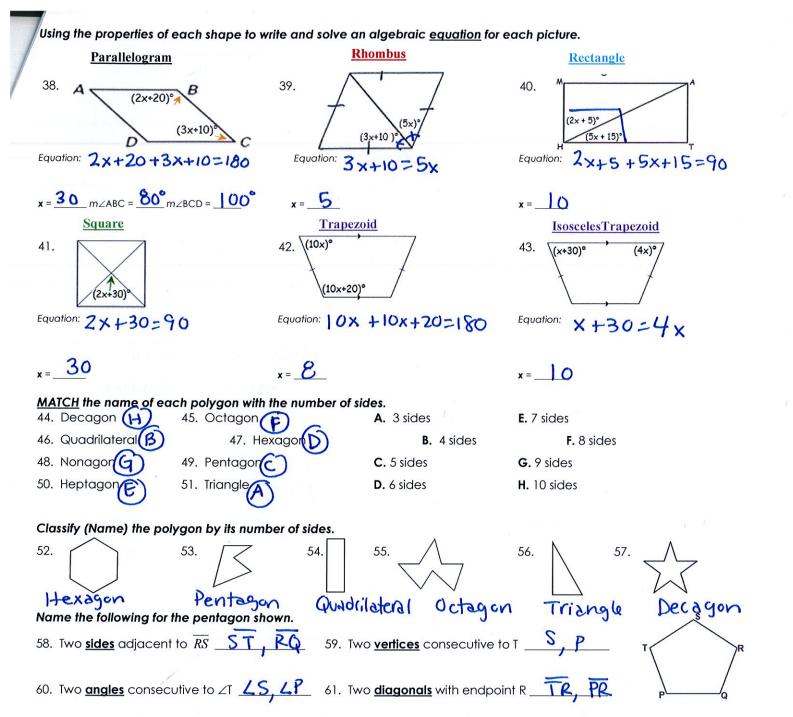

For each <u>RECTANGLE</u>, find each length or measure.



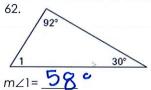

For each SQUARE, find each length or measure.

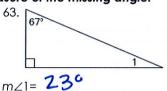


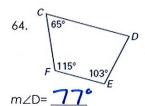
For each TRAPEZOID, find each length or angle measure

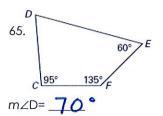


Name all the quadrilaterals that have each property. Choices: parallelogram, rhombus, rectangle, square. There will be more than one answer!


- 34. All angles congruent Rectangle, Square
- 35. Opposite angles are congruent Parallelagram, Phambus, Rec., &
- 36. The diagonals are perpendicular Rhombus, Square 37. The diagonals bisect each other







Use the formulas to find the measure of the missing angle.

