2007 AP® CHEMISTRY FREE-RESPONSE QUESTIONS

- 6. Answer the following questions, which pertain to binary compounds.
 - (a) In the box provided below, draw a complete Lewis electron-dot diagram for the IF_3 molecule.

- (b) On the basis of the Lewis electron-dot diagram that you drew in part (a), predict the molecular geometry of the IF_3 molecule.
- (c) In the SO_2 molecule, both of the bonds between sulfur and oxygen have the same length. Explain this observation, supporting your explanation by drawing in the box below a Lewis electron-dot diagram (or diagrams) for the SO_2 molecule.

(d) On the basis of your Lewis electron-dot diagram(s) in part (c), identify the hybridization of the sulfur atom in the SO₂ molecule.

The reaction between $SO_2(g)$ and $O_2(g)$ to form $SO_3(g)$ is represented below.

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$$

The reaction is exothermic. The reaction is slow at 25°C; however, a catalyst will cause the reaction to proceed faster.

(e) Using the axes provided on the next page, draw the complete potential-energy diagram for both the catalyzed and uncatalyzed reactions. Clearly label the curve that represents the catalyzed reaction.

© 2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

- Reaction Progress
- (f) Predict how the ratio of the equilibrium pressures, $\frac{p_{SO_2}}{p_{SO_3}}$, would change when the temperature of the uncatalyzed reaction mixture is increased. Justify your prediction.
- (g) How would the presence of a catalyst affect the change in the ratio described in part (f)? Explain.

STOP

END OF EXAM