1. Answer the following questions about the solubility and reactions of the ionic compounds \(\text{M(OH)}_2 \) and \(\text{MCO}_3 \), where M represents an unidentified metal.

(a) Identify the charge of the M ion in the ionic compounds above.

(b) At \(25^\circ \text{C} \), a saturated solution of \(\text{M(OH)}_2 \) has a pH of 9.15.

 (i) Calculate the molar concentration of \(\text{OH}^- \) in the saturated solution.

 (ii) Write the solubility-product constant expression for \(\text{M(OH)}_2 \).

 (iii) Calculate the value of the solubility-product constant, \(K_{sp} \), for \(\text{M(OH)}_2 \) at \(25^\circ \text{C} \).

(c) For the metal carbonate, \(\text{MCO}_3 \), the value of the solubility-product constant, \(K_{sp} \), is \(7.4 \times 10^{-14} \) at \(25^\circ \text{C} \).

 On the basis of this information and your results in part (b), which compound, \(\text{M(OH)}_2 \) or \(\text{MCO}_3 \), has the greater molar solubility in water at \(25^\circ \text{C} \)? Justify your answer with a calculation.

(d) \(\text{MCO}_3 \) decomposes at high temperatures, as shown by the reaction represented below.

 \[
 \text{MCO}_3(s) \leftrightharpoons \text{MO}(s) + \text{CO}_2(g)
 \]

 A sample of \(\text{MCO}_3 \) is placed in a previously evacuated container, heated to \(423 \text{ K} \), and allowed to come to equilibrium. Some solid \(\text{MCO}_3 \) remains in the container. The value of \(K_p \) for the reaction at \(423 \text{ K} \) is 0.0012.

 (i) Write the equilibrium-constant expression for \(K_p \) of the reaction.

 (ii) Determine the pressure, in atm, of \(\text{CO}_2(g) \) in the container at equilibrium at \(423 \text{ K} \).

 (iii) Indicate whether the value of \(\Delta G^\circ \) for the reaction at \(423 \text{ K} \) is positive, negative, or zero. Justify your answer.