CHAPTER II IMP'S + SOLIDS

PHASE CHANGES ⇒ ΔG, ΔS "entropy"

SOLID → lowest S ⇒ most orderly arrangement

SOLID ⇌ LIQUID ⇌ GAS

T = average KE = \frac{1}{2}mv^2

HOTTEST = FROZEN

ATTRACTION FORCES

INTRA MOLECULAR

- Bonds
 - held atoms together to make compounds
 - chemical properties
 - ionic
 - covalent
 - metallic

INTER MOLECULAR (IMP's)

- in between molecules
- "sticky forces"
 - Coulombic
 - Physical Pops
 - weaker than bonds
CHAPTER 11 IMFs + SOLIDS

Phase Changes \(\Rightarrow \Delta E, \Delta S \) "Entropy"

Solid \(\rightarrow \) lowest \(S \) \(\Rightarrow \) most orderly arrangement

\[
\begin{align*}
\text{Solid} & \quad \longleftrightarrow \quad \text{Liquid} & \quad \longleftrightarrow \quad \text{Gas} \\
S & \quad \uparrow & \quad S & \downarrow
\end{align*}
\]

\(T \propto \text{average KE} = \frac{1}{2} m v^2 \)

Hotter = Faster

Attractive Forces

- **Intra Molecular Bonds**
 - Hold atoms together to make compounds
 - Chemical Properties
 - Ionic
 - Covalent
 - Metallic

- **Inter Molecular (IMFs)**
 - in between molecules
 - "Sticky Forces"
 - Coulombic
 - Physical props
 \(\rightarrow \) weaker than bonds
1) Ion - Dipole
 - mixture of ions + polar molecules
 - aqueous soln's of ionic compounds

 strength depends on
 - magnitude of charges (Q)
 - size of ions (r)

 \[F = k \frac{Q_1 Q_2}{r^2} \]

 \[\text{H}_3\text{O}^+ \rightarrow \text{H}_2\text{O} \quad \text{M}^+ (aq) + \text{X}^- (aq) \]

 - waters of hydration

2) van der Waals Forces
 - London (Dispersion) Forces LDF's
 - Dipole - Dipole
 - H-Bonds

A) Dipole - Dipole → polar molecules
 - the larger the dipole moment (μ)
 - the stronger the interaction
B) London (dispersion) forces LDFT's

→ induced dipole interaction

→ a charge (ion, dipole) distorts the electron cloud of a nearby molecule
→ the nearby molecule becomes temporarily polar

* Weakest LDF among similar sized molecules

Strongest → Big Atoms
Big Molecules (many atoms)

"Polarizability" = more e- → more polarizable → Stronger

LDFT

c) H-Bond

→ a special case of dipole - dipole

\[N - H \ldots \]
\[O - H \ldots \quad N, O, F \]
\[F - H \quad \uparrow \quad H \text{ Bond} \]

\[N - H \]

\[N - H \]

\[N \quad (pr) \quad N \]

H-Bond