Heat of Dilution

[CdSO₄ solution] → add water H₂O, more heat absorbed

\[\text{very rare} \quad \text{T} \text{H}_2\text{O} \downarrow \]

[CdSO₄ solution] → add water H₂O, more heat released

\(\Delta H \text{rxn} \) conc. acid \(\rho \) H₂SO₄

Bond Energy (Chapter 9)

- Bond breaking is **endothermic**
- Bond formation is **exothermic**

\[\Delta H_{\text{rxn}} = \Sigma \text{BE}_{\text{reactants}} - \Sigma \text{BE}_{\text{products}} \]

\[= \Sigma \text{BE}_{\text{broken}} + \Sigma \text{BE}_{\text{formed}} \]

AP 2001

\[2 \text{NO} + \text{O}_2 \rightarrow 2 \text{NO}_2 \quad \Delta H_{\text{rxn}} = -114.1 \text{ kJ/mol} \]

given

\[\begin{array}{c}
N=0 \\
N=0 \\
O=0 \\
O=0 \\
\end{array} \]

\[\begin{array}{c}
\Delta H_{\text{NO}} \\
\Delta H_{\text{NO}} \\
\Delta H_{\text{O}_2} \\
\Delta H_{\text{O}_2} \\
\end{array} \]

\[\Delta H_{\text{rxn}} = \left[2(N=0) + O=0 \right] - [4N=0] \]
Heat of Dilution

(+) \(\Delta H_{\text{soln}} \) \(\rightarrow \) add more \(H_2O \), more heat absorbed

\(\rightarrow \) may see \(+H_2O \)

(-) \(\Delta H_{\text{soln}} \) \(\rightarrow \) add more \(H_2O \), more heat released

* conc. acids, e.g. \(H_2SO_4 \)

Bond Energy (chapter 9)

- Bond Breaking is **Endothermic**
- Bond Formation is **Exothermic**

\[
\Delta H_{\text{rxn}} = \sum \text{BE}_{\text{Reactants}} - \sum \text{BE}_{\text{Products}}
\]

\[
= \sum \text{BE}_{\text{broken}} + \sum \text{BE}_{\text{formed}}
\]

AP 2001

\[2 \text{NO} + O_2 \rightarrow 2 \text{NO}_2 \]

\(\Delta H_{\text{rxn}} = -114.1 \text{ kJ/mol} \)

Given:

- \(N=0 \)
- \(N=0 \)
- \(O=0 \)
- \(O=0 \)
- \(O=0 \)

\(\Delta \text{H}_{\text{rxn}} = [2(N=0) + O=0] - [4N=O] \)
Thermodynamics \(\rightarrow \) the interconversion of heat with other types of energy

"State" of the system \(\rightarrow T, P, V, E, \) internal composition

State function \(\rightarrow \) change in 1 or more of path independent

\[q + w \Rightarrow \text{are NOT state functions} \]

1st Law of Thermodynamics
"Conservation of Energy"

\[\boxed{\Delta E_{\text{system}} + \Delta E_{\text{surroundings}} = 0} \]

\(\Delta E = q + w \rightarrow \) work

\(\text{heat} \)

Sign convention

Endothermic \(q^+ \) \(q > 0 \) \(E \) is added to the system

Exothermic \(q^- \) \(q < 0 \)

System does work on the surroundings \(W^- \)
Surroundings do work on the system \(W^+ \)

Work = Force \(\times \) Distance

for a gas changing volume \(W = \Theta P \Delta V \)

Surroundings push \(W^+ \) on the system (compression) \(\Delta V = (-) \)
System pushes out against the surroundings \(\Delta V = (+) \) (expander)
Work = -PΔV ⇒ \[\text{work} = \text{mass} \times \frac{L}{101.3} \Rightarrow J \]

\[P = \frac{\text{force}}{\text{area}} = \frac{N}{m^2} = 1 \text{ N/m}^2 = 1 \text{ J} \]

Example

Reactant produces a gas

reactant volume = \(\Delta V \) ⇒ \(\Delta V \) ⇒ V of gas produced

\[P_{\text{air}} = 0.95 \text{ atm} \; \; \; V = 3.00 \text{ L} \; \; \; W = ? \]

\[W = 0\left(0.95 \text{ atm}\right)\left(3.00 \text{ L}\right) \times 101.3 = 0 \text{ J} \]

Whenever a reaction results in a net increase in volume of gas, the system does work on the surroundings (Expansion)

If \(P_{\text{external}} \) is constant (open air)

\[\Delta H = \Delta E + P\Delta V \]

\[\Delta E = \Delta H - P\Delta V \quad (\Delta E = q+w) \]

\[\Delta E = \Delta H - \Delta U_{\text{ext}} \]

\[\Delta E = \Delta H - RT \Delta U \]

Constant volume (Bomb calorimeter)

\[W = -P\Delta V \; \; \Delta V = 0 \]

\[W = 0 \]

\[\Delta E = q + w = q \]