Density of a gas
\[d = \frac{m}{V} \]

\[d = \frac{m}{V} = \frac{MV}{RT} \]

\[\frac{p}{RT} = \frac{m}{V} \Rightarrow \frac{p}{RT} = \frac{m}{V} \cdot \frac{d}{M_m} \]

Density = \(\frac{p \cdot M_m}{RT} \)

\[M_m = \frac{dRT}{p} \]

What is the density of \(\text{N}_2 \) at room conditions?

\[T = 20^\circ C \quad P = 762 \text{ mm Hg} \]

\[d = \frac{p \cdot M_m}{RT} = \left(\frac{762 \text{ mm Hg}}{760 \text{ mm Hg}} \right) \left(\frac{28.02 \text{ g/mol}}{62.01 \text{ g/mol}} \right) \left(\frac{293 \text{ K}}{298 \text{ K}} \right) = 1.17 \text{ g/L} \]

A colorless gas is determined to be composed of \(\text{S} \), \(\text{F}_2 \). The density of the gas is \(6.16 \text{ g/L} \). At \(23^\circ C \) and \(1.024 \text{ atm} \), \(M_m \)? possible identity?

\[M_m = \frac{dRT}{p} = \left(\frac{6.16 \text{ g/L}}{1.024 \text{ atm}} \right) \left(\frac{293 \text{ K}}{298 \text{ K}} \right) \]

\[1.46 \]

\[-32 \]

\[\frac{114 \text{ g/mol}}{19 \cdot 26} = 0.7 \]

\(\text{SF}_6 \)
Density of a gas
\[d = \frac{m}{V} \frac{g}{L} \]
\[n = \frac{\text{mass}}{\text{M}_m} \]

\[PV = nRT \]
\[\frac{P}{RT} = \frac{n}{V} \Rightarrow \frac{P}{RT} = \frac{m_0}{V_m} \]

Density = \[\frac{P \cdot M_m}{RT} \]
\[M_m = \frac{dRT}{P} \]

What is the density of \(\text{N}_2 \) at room conditions?
\(T = 298 \degree C \)
\(P = 762 \text{ mmHg} \)

\[d = \frac{P \cdot M_m}{RT} = \frac{(762 \text{ mmHg})(28.02 \text{ g/mol})}{(62.4 \text{ g/mol})(298 \text{ K})} = 1.17 \text{ g/L} \]

A colorless gas is determined to be composed of \(S \) and \(F \). The density of the gas is 6.104 g/L at 23\(^\circ\)C and 1.024 atm. \(M_m = ? \) possible identity?

\[M_m = \frac{dRT}{P} = \frac{(6.104 \text{ g/L})(0.0821 \frac{\text{L}\cdot\text{atm}}{\text{mol}\cdot\text{K}})(296 \text{ K})}{1.024 \text{ atm}} \]

146
-32
\[\frac{114 \text{ g}}{19} \rightarrow 6 \]
\(\text{SF}_6 \)
Dalton's Law of Partial Pressure

* USED WITH MIXTURES OF GASES

\[P_T = P_1 + P_2 + P_3 + \ldots \]

The total \(P \) of a mixture of gases is the sum of the partial (individual) pressures of the gases in the mixture.

Mixtures of 2 gases in the same container at the same \(T \)

\[P_T = \frac{(n_1 + n_2)RT}{V} \]

\(\Rightarrow \) mole fraction

\[X_1 = \frac{n_1}{(n_1 + n_2)} \quad X_1 < 1 \]

\[P_1 = X_1 P_T \quad P_2 = X_2 P_T \]

\[P_i = X_i P_T \quad \text{for a mixture of } g \text{ gases} \]
M + 2H₂ → H₂ + MH₂

If 45.0 mL of H₂ is collected over water at 15°C (E₀ = 12.79 mm Hg at 0°C (5°C)) and room P (762 mm Hg), \(n_{H₂} = ? \), \(g_{H₂} = ? \)

\[P_T = P_{H₂} + P_{H₂O} \]
\[P_{H₂} = P_T - P_{H₂O} = \frac{762.0 \text{ mm Hg}}{12.79 \text{ mm Hg}} = 749.2 \text{ mm Hg} \]

\[n_{H₂} = \frac{P_{H₂} V}{RT} = \frac{(749.2 \text{ mm Hg})(0.0450 \text{ L})}{(62.4 \text{ mm Hg} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})(288 \text{ K})} = 1.88 \times 10^{-3} \text{ mol H₂} \]

\[\times 2.02 g/\text{mol} \]
\[3.79 \times 10^{-3} \text{ g H₂} \]

10g Ar, 10g Ne, 10g He are added to an empty 5.00 L container kept at 3.00 atm. \(P \) of each gas?

\[
\text{Ar:} 10g \Rightarrow 0.25 \text{ mole} \\
\text{Ne:} 10g \Rightarrow 0.50 \text{ mole} \\
\text{He:} 10g \Rightarrow 2.50 \text{ mole} \\
\]

\[P_{\text{Ar}} = \left(\frac{0.25}{3.05} \right) 3.00 \text{ atm} = 0.23 \text{ atm} \]

\[P_{\text{Ne}} = \left(\frac{0.50}{3.05} \right) 3.00 \text{ atm} = 0.46 \text{ atm} \]

\[P_{\text{He}} = \left(\frac{2.50}{3.05} \right) 3.00 \text{ atm} = 2.31 \text{ atm} \]