SOLIDS

Key idea: nature of attractive force

- densest, "packing" of particles of all size and shape
- high density, rigid, incompressible
- the stronger the attractive force, the higher the mp

AMORPHOUS

- no regular repeating pattern
- Ice's

CRYSTALLINE

- plastic, waxes, asphalt, glass
- diamond, hydrocarbons

3-D repeating pattern

- crystal lattice
- lattice points = ions, molecules, atoms

4 types

1. Molecular
2. Ionic
3. Metallic
4. Covalent (network)

Molecular solids

- molecules at lattice points
- molecules held together by
 - strong forces within the molecules
 - weak forces between them
- low mfp, soft, crunchy

- ice, iodine (I₂), sulfur (S₈), phosphorus (P₄)
 - dry ice CO₂
SOLIDS Key idea: nature of attractive force

generate: closest "packing" of particles of all 3 states
 → high density, rigid, incompressible
 → the stronger the attractive force
 the higher the mp

SOLIDS MOLECULARS ⇒ no regular repeating pattern

CRYSTALLINE
 → IMP'S (plastics, waxes, asphalt, glass)
 → network hydrocarbons

3-D repeating pattern
 1. Crystal lattice
 lattice points ⇒ ions, molecules, atoms

4 types
 1. MOLECULAR
 2. IONIC
 3. METALLIC
 4. COVALENT (NETWORK)

MOLECULAR SOLIDS
 → molecules at lattice points
 → molecules held together by IMP'S
 strong forces within the molecules
 weak forces between them
 → low mp, soft, crumbly

 ice, iodine (I₂), sulfur (S₈), phosphorus (P₄)
 dry ice CO_2
(2) **IONIC SOLIDS**

- **Ions** at **lattice points**
- **Held together by ionic bonds**: $F = \frac{kQq}{r^2}$

- **Rocks**
 - High up, brittle
 - Non-conducting solids
 - But conduct as liquids or aqueous solutions

(3) **METALLIC SOLIDS**

- **Metal atoms (ions)** at **lattice points**
 - Shiny
 - Malleable, ductile, high mp
 - Conductors

- **METALLIC BONDING**
 - *Strong, nondirectional*

 "SEA of Electrons"
 - Delocalized valence e-
 - Surrounding (+) ion cores

Why are metals good conductors?

BAND THEORY

- When atoms come together and bond, AO's combine to form **Molecular Orbitals (MO)**
- MO's will produce different E's based on which/how many AO's were combined

 "Band" of allowable E's
Valence band → e^-'s involved in bonding

Conduction band → e^-'s @ TE than
Valence band but NOT LOST

band gap is very small in metals