Learning Target: © Finding the zeros of a polynomial and their multiplicities, and using them along with end behavior, to sketch the graph of a polynomial by hand.

Find the real zeros by factoring.

Example 1: $P(x) = x^3 - 6x^2 + 8x$

Example 2: $P(x) = x^5 - 20x^3 + 64x$

Intermediate Value Theorem:

Use the **Intermediate Value Theorem** to verify that P(x) has a zero between a and b.

a. $P(x) = 2x^3 - 21x^2 - 2x + 25$; a = 1, b = 2**b**. $P(x) = x^3 - x - 8$; a = 2.1, b = 2.2

• If when you plug in two values for x the signs change for y, what does that mean?

Multiplicity of a Zero:

EVEN and ODD Powers of $\left(x-c\right)$ Theorem:

Multiplicity of the Zero is ______ the graph ______

Multiplicity of the Zero is ______ the graph ______

Determine the x-intercepts of the graph of P(x). For each x-intercept, use the **EVEN and ODD Powers of** (x - c)**Theorem** to determine whether the graph of P(x) crosses the x-axis (**passes through**) or intersects but does not cross (**bounces off**) the x-axis. Also, determine the **multiplicity** of each x-intercept.

a.
$$P(x) = -(x+3)^2(x-9)$$

b. $P(x) = (x+2)(x-6)^2$

 ______multiplicity______pass through/bounce
 ______multiplicity______pass through/bounce

 ______multiplicity______pass through/bounce
 ______multiplicity______pass through/bounce

Sketching polynomials WITHOUT TABLES OR GRAPHING CALCULATORS!

Procedure for graphing:

- **1**. Start by graphing the zeros
- 2. Then determine whether the graph passes through the zero or hits and bounces off the zero
- **3**. Graph (if possible) the *y*-intercept
- 4. Determine the end behavior which way should the arrows go?
- 5. Create a smooth curve connecting the intercepts

Sketch the graph of the polynomial function using end behavior, leading coefficients, *x*-intercepts and *y*-intercepts.

a. $P(x) = x^3 + x^2 - 6x$ [factor first!!] What is the **degree** of the polynomial?_____

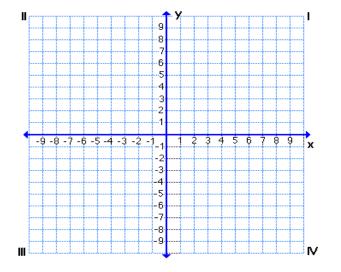
What kind of number is the degree?_____

What is the sign of the leading coefficient?_____

What is the end behavior?

As
$$x \to \infty$$
, $f(x) \to$

As $x \to -\infty$, $f(x) \to$

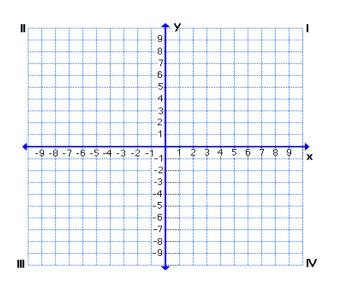

What are the *x*-intercepts (zeros) & their multiplicities?

_____ multiplicity_____ pass through/bounce

_____ multiplicity_____ pass through/bounce

multiplicity pass through/bounce

What is the *y*-intercept? [plug in x = 0] You will only graph this if it fits – if it doesn't, just estimate!



Procedure for graphing:

- 1. Start by graphing the zeros
- 2. Then determine whether the graph passes through the zero or hits and bounces off the zero
- **3**. Graph (if possible) the y-intercept
- 4. Determine the end behavior which way should the arrows go?
- 5. Create a smooth curve

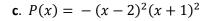
Sketch the graph of the polynomial function using end behavior, leading coefficients, x-intercepts and y-intercepts.

b. $P(x) = -(x-3)^2(x+1)$

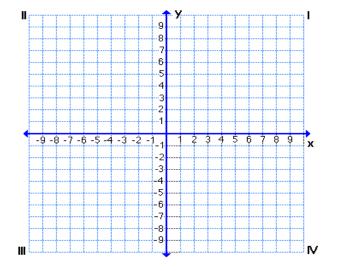
What is the **end behavior**? As $x \to \infty$, $f(x) \to$ As $x \to -\infty$, $f(x) \to$ What are the x-intercepts (zeros) & their multiplicities? ______ multiplicity_____ pass through/bounce multiplicity_____ pass through/bounce What is the y-intercept? [plug in x = 0] ______ You will only graph this if it fits - if it doesn't, just estimate! What is the **degree** of the polynomial?_____ What is the **degree** of the polynomial?_____ What is the **sign** of the **leading coefficient**?____ What is the **sign** of the **leading coefficient**?_____ What is the **end behavior**? As $x \to \infty$, $f(x) \to$ As $x \to -\infty$, $f(x) \to$

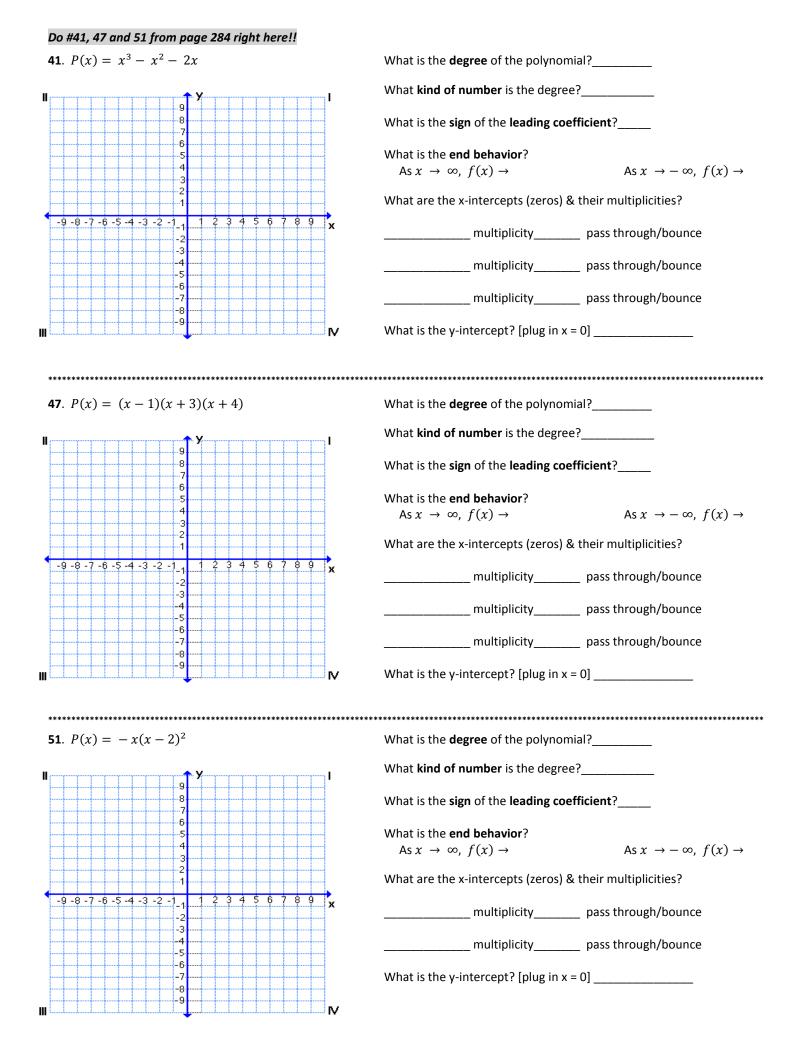
What is the **degree** of the polynomial?_____

What kind of number is the degree?


What is the **sign** of the **leading coefficient**?

What are the x-intercepts (zeros) & their multiplicities?


_____ multiplicity_____ pass through/bounce


_____ multiplicity_____ pass through/bounce

What is the y-intercept? [plug in x = 0] You will only graph this if it fits – if it doesn't, just estimate!

Key Ideas:

