Probability: \[P(A) = \frac{\# \text{Successes}}{\# \text{Total}} \]

Odds in Favor of an Event:
Success : Failure

Odds Against an Event:
Failure : Success

EXAMPLE 1 – Simple Probabilities
You pick a card from a standard deck of 52 playing cards. Find the following probabilities:

<table>
<thead>
<tr>
<th>a. An 8</th>
<th>b. A king</th>
<th>c. A red king</th>
<th>d. A black diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{4}{52} = \frac{1}{13}]</td>
<td>[\frac{4}{52} = \frac{1}{13}]</td>
<td>[\frac{2}{52} = \frac{1}{26}]</td>
<td>[\frac{0}{52} = 0]</td>
</tr>
</tbody>
</table>

Integers 1 through 20 are placed on ping pong balls and dropped in a bag. Find the probability of the given event:

<table>
<thead>
<tr>
<th>a. A 12</th>
<th>b. A perfect square</th>
<th>c. A factor of 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{1}{20}]</td>
<td>[\frac{4}{20} = \frac{1}{5}]</td>
<td>[\frac{7}{20}]</td>
</tr>
</tbody>
</table>

EXAMPLE 2 – Using Permutations or Combinations with Probability
A new organic cookie company plans to put 5 new cookies on the market: chocolate chip, oatmeal, sugar, dried cherry, and peanut butter. The order in which the cookies are introduced will be randomly selected. Each cookie will have a different price.

a. You've taste tested three of the cookies. What is the probability that the first two cookies introduced are two that you've tasted before?

\[\frac{3 \binom{2}{2}}{5 \binom{2}{2}} = \frac{3}{10} \]

All the days of the week are placed on a cube and put into a bag.

a. You reach into the bag and pull out two cubes. What is the probability that both of them start with the letter T?

\[\frac{2 \binom{2}{2}}{7 \binom{2}{2}} = \frac{1}{21} \]

b. What is the probability that one of them starts with the letter T?

\[\frac{2 \binom{1}{1} \cdot 5 \binom{1}{1}}{7 \binom{2}{2}} = \frac{2 \cdot 5}{21} = \frac{10}{21} \]

c. What is the probability that none of them start with the letter T?

\[\frac{5 \binom{2}{2}}{7 \binom{2}{2}} = \frac{10}{21} \]
There are 37 NOW THAT'S WHAT I CALL MUSIC CDs released. 15 have a red cover, 12 have a blue cover, and 10 have a green cover.

a. You purchase 4 CDs at random. What is the probability that all 4 have red covers?
 \[
 \frac{15 \cdot C_4}{37 \cdot C_4} = \frac{1365}{60045} = \frac{13}{629}
 \]

b. You purchase 4 CDs at random. What is the probability that 3 have red covers and one green?
 \[
 \frac{15 \cdot C_3 \cdot 10 \cdot C_1}{37 \cdot C_4} = \frac{455 \cdot 10}{60045} = \frac{130}{1887}
 \]

c. You purchase 4 CDs at random. What is the probability that 3 have blue covers?
 \[
 \frac{12 \cdot C_3 \cdot 25 \cdot C_1}{37 \cdot C_4} = \frac{220 \cdot 25}{60045} = \frac{5500}{60045} = \frac{1160}{13209}
 \]

d. You purchase 4 CDs at random. What is the probability that they all have different colors?

 0 only 3 colors total!

EXAMPLE 3 – Multiple Events
A spinner is divided into tenths. The sections are numbered 1-10. If the spinner is spun, find the probability that the number is:

a. A 2 \[\frac{1}{10} \]
 b. A multiple of 4 \[\frac{2}{10} = \frac{1}{5} \]
 c. Between 0 and 30 \[\frac{10}{10} = 1 \]
 d. \(\frac{1}{2} \)

Two coins are tossed. Find the probability that:

 a. Both show heads \[\frac{1}{4} \]
 b. The coins match \[\frac{2}{4} = \frac{1}{2} \]
 c. There is at least one tail \[\frac{3}{4} \]

A bag contains 8 brown socks and 6 black socks. If two socks are randomly drawn, what is the probability that they match?
 \[
 \frac{8 \cdot C_2 + 6 \cdot C_2}{14 \cdot C_2} = \frac{28 + 15}{91} = \frac{43}{91}
 \]

EXAMPLE 4 – Finding Odds
A standard six-sided die is rolled. Find the odds of the following:

a. In favor of rolling a 6 \[1:5 \]
 b. Against rolling an Odd \[3:3 \]
 c. In favor of 2 or 3 \[2:4 \]

A card is drawn from a standard deck of 52 cards. Find the odds of the following:

a. In favor of a 10 \[4:48 \]
 b. Against a queen \[1:12 \]
 c. In favor of a heart \[13:39 \]
 d. In favor of a king \[1:12 \]