State the inverse of each relation

1. Given the ordered pairs: \{(3, -2) (-1, 5) (4, 0)\}

 the inverse points are: _______________________________

 Graph the inverse.

 Is this an example of an inverse function? _______

2. Given the table:

 \[
 \begin{array}{c|cccc}
 x & 0 & 1 & 2 & 3 \\
 \hline
 y & 3 & 1 & 2 & 4 \\
 \end{array}
 \]

 the inverse is:

 \[
 \begin{array}{c|cccc}
 x & & & & \\
 \hline
 y & & & & \\
 \end{array}
 \]

 Is this an example of an inverse function? _______

3. Given the graph:

 the inverse is:

 (it may help to list the ordered pairs….)

 Is this an example of an inverse function? _______

Verify that \(f \) and \(g \) are inverse functions. Find \(f(g(x)) \) and \(g(f(x)) \).

4. \(f(x) = x + 2; \ g(x) = x - 2 \)

5. \(f(x) = 4x - 1; \ g(x) = \frac{1}{4}x + \frac{1}{4} \)
Given the following graph, determine if it is a function using the vertical line test, if the inverse is a function using the horizontal line test, and then graph the inverse by choosing points from the graph and flipping the x and y.

6.
Function: _______ Function: _______
Original ordered pairs: _____________________
Inverse ordered pairs: _____________________

7.
Function: _______ Function: _______
Original ordered pairs: _____________________
Inverse ordered pairs: _____________________

8. How does the graph of the original function compare to the graph of the inverse?
 It is a reflection over the line ________________ (fill in the equation of the line)

Given the equation of the function, write the equation of the inverse, \(g(x) \).

9. \(f(x) = 3x - 1 \)

10. \(f(x) = \frac{1}{2}x + 4 \)

11. \(f(x) = \frac{x - 2}{3} \)

12. \(f(x) = x^2; x \geq 0 \)

13. \(f(x) = x^3 + 3 \)

14. \(f(x) = 2x^2 - 1; x \geq 0 \)
Find the inverse of each function and then graph the equation and its inverse on the same coordinate plane.

15. \(f(x) = x + 2 \)

\[g(x) = \frac{1}{x-2} \]

Graph of \(f(x) \) and \(g(x) \) (label each)

16. \(f(x) = 2x + 1 \)

\[g(x) = \frac{1}{2x-1} \]

Graph of \(f(x) \) and \(g(x) \) (label each)

17. \(f(x) = x^2 - 1; x \geq 0 \)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Review composite functions: If \(f(x) = x^2 \) and \(g(x) = 3x - 2 \), find

18. \(g(f(5)) \)

19. \(f(g(5)) \)

20. \(g(f(2)) \)