Sketch the graph of the quadratic function. Identify the vertex, x-intercept(s) and y-intercept.

1. \(f(x) = -x^2 - 2 \)
 - Vertex: \((0, -2)\)
 - X-Intercept(s): none
 - Y-Intercept: \((0, -2)\)

2. \(f(x) = x^2 - 6x + 9 \)
 - Vertex: \((3, 0)\)
 - X-Intercept(s): \((3, 0)\)
 - Y-Intercept: \((0, 9)\)

3. \(f(x) = x^2 - 2x - 8 \)
 - Vertex: \((1, -9)\)
 - X-Intercept(s): \((4, 0); (-2, 0)\)
 - Y-Intercept: \((0, -8)\)

Find a function whose graph is a parabola with the given vertex and that passes through the given point. Leave your answer in standard form \(y = a(x - h)^2 + k \)

4. Vertex: \((1, -2)\); Point: \((4, 16)\)
 \[16 = a(4 - 1)^2 - 2 \]
 \[16 = 9a - 2 \]
 \[18 = 9a \]
 \[a = 2 \]
 \[y = 2(x - 1)^2 - 2 \]

5. Vertex: \((3, 4)\); Point: \((1, -8)\)
 \[-8 = a(1 - 3)^2 + 4 \]
 \[-8 = 4a + 4 \]
 \[-12 = 4a \]
 \[a = -3 \]
 \[y = -3(x - 3)^2 + 4 \]

6. A ball is thrown across a playing field. Its path is given by the equation \(y = -0.005x^2 + x + 5 \), where \(x \) is the distance the ball has traveled horizontally, and \(y \) is its height above ground level, both measured in feet.

 a. What is the maximum height attained by the ball?
 \[y \text{ coordinate of the vertex} \]
 \[\frac{-1}{2(-0.005)} = 100 \]
 \[0.005(100)^2 + 100 + 5 = 55 \]

 6a.) 55 ft.
b. How far has it traveled horizontally when it hits the ground?
\[x = \text{intercept} \]
\[0 = -0.005x^2 + x + 5 \]

\[\text{use graphing calculator or quadratic formula} \]

7. The effectiveness of a television commercial depends on how many times a viewer watches it. After some experiments an advertising agency found that if the effectiveness \(E \) is measured on a scale of 0 to 10, then \(E(n) = \frac{2}{3}n - \frac{1}{90}n^2 \) where \(n \) is the number of times a viewer watches a given commercial. For a commercial to have maximum effectiveness, how many times should a viewer watch it?

\[\text{x-coordinate of the vertex} \]
\[x = \frac{-\frac{2}{3}}{2(-\frac{1}{90})} = 30 \]

\[\text{graph opens down, makes sense to maximize} \]
\[7.) \ 30 \text{ times} \]

8. Find two positive numbers whose sum is 100 and the sum of whose squares is a minimum.

\[\#1 = x \quad f(x) = x^2 + (100 - x)^2 \]
\[\#2 = 100 - x \quad f(x) = x^2 + 10000 - 200x + x^2 \]

\[= 2x^2 - 200x + 10000 \]

\[x = \frac{200}{2(2)} = \frac{200}{4} = 50 \]

\[\text{x-coordinate of vertex} \]

9. A farmer has 2400 feet of fencing and wants to fence off a rectangular field that borders a straight river. He does not need a fence along the river.

\[\text{graph opens down, makes sense to maximize} \]

a. Find a function that models the area of the field in terms of one of its sides.

\[A(x) = x(2400 - 2x) = -2x^2 + 2400x \]

\[9a.) A(x) = -2x^2 + 2400x \]

b. What are the dimensions of the field that would produce the maximum area?

\[\text{x-coordinate of the vertex} \]
\[x = \frac{-2400}{2(-2)} = 600 \]

\[9b.) \ 600 \text{ ft by 1200 ft} \]

9c.) \[720,000 \text{ ft}^2 \]

10. Find all the real zeros of the polynomial function. Determine the multiplicity of each zero. Use the leading coefficient test and end behavior to sketch the graph.

\[f(x) = -x^4 + 8x^3 - 15x^2 \]

\[= -x^2(x^2 - 8x + 15) \]

\[= -x^2(x - 3)(x - 5) \]

10. Zeros:

\[\begin{align*}
0 \text{ mult. 2} \\
3 \text{ mult. 1} \\
5 \text{ mult. 1}
\end{align*} \]

End Behavior:

\[x \to \infty \quad f(x) \to -\infty \]

\[x \to -\infty \quad f(x) \to -\infty \]

\[\text{degree is even} \]

\[\text{L.C. is negative} \]
11. Find a polynomial function with the given zeros, multiplicities and degree.

12. Zero: -4, multiplicity 2
Zero: $1 + \sqrt{2}$, multiplicity 1
Zero: $1 - \sqrt{2}$, multiplicity 1
Falls to the right, falls to the left
\[(x+4)^2(x-(1+\sqrt{2}))(x-(1-\sqrt{2}))\]
\[(x^2+8x+16)(x-1-\sqrt{2})(x-1+\sqrt{2})\]
\[(x^2+8x+16)((x-1)^2-(\sqrt{2})^2)\]
\[(x^2+8x+16)(x^2-2x+1-2)\]

Find all rational zeros of the function. Identify the multiplicity of each zero.

13. $f(x) = x^3 - 4x^2 - 7x + 10$

$p: 10 \rightarrow 1, 2, 5, 10$

$q: 1 \rightarrow 1$

$p/q: \pm 1, \pm 2, \pm 5, \pm 10$

14. $f(x) = x^3 - x^2 - 8x + 12$

$p: 12 \rightarrow 1, 2, 3, 4, 6, 12$

$q: 1 \rightarrow 1$

$p/q: \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
Find all rational zeros of the function. Identify the multiplicity of each zero. [continued]

15. \(f(x) = x^4 - 2x^3 - 3x^2 + 8x - 4 \)

\[
\begin{array}{r|rrrr}
& 1 & -2 & -3 & 8 & -4 \\
\hline
4 & 4 & -4 & 0 & 0 & 0 \\
\hline
1 & 1 & -1 & -4 & 0 & 0
\end{array}
\]

* test 1 again right away! it might be a double root!!

* when the degree of the polynomial is greater than three, always test for a double root... it might be the only other rational solution!

-2 \mult 1

16. \(f(x) = x^4 - 5x^3 + 6x^2 + 4x - 8 \)

\[
\begin{array}{r|rrrr}
& 1 & -5 & 6 & 4 & -8 \\
\hline
8 & 8 & -4 & 2 & 6 & -2 \\
\hline
1 & 1 & -4 & 2 & 6 & -2
\end{array}
\]

* No!

\[
\begin{array}{r|rrrr}
& 1 & -5 & 6 & 4 & -8 \\
\hline
2 & 2 & -8 & 8 & -8 & 0 \\
\hline
1 & -6 & 12 & -8 & 0
\end{array}
\]

test for double root, if not D.R. then move on to next possible rational zero

-2 \mult 1

17. Use the Remainder Theorem to find \(f(1) \) for \(f(x) = 4x^4 - 16x^3 + 7x^2 + 20 \).

\(f(1) = 4(1)^4 -16(1)^3 +7(1)^2 + 20 = 15 \)

18. Using synthetic division, find the remainder for \(f(x) \) in #17, if it is divided by \((x - 1) \).

\[
\begin{array}{r|rrrr}
& 4 & -16 & 7 & 20 \\
\hline
1 & 4 & -12 & -5 & -5
\end{array}
\]

19. Compare your results from #17 and #18. Describe those results.

When the divisor is linear, \(x - c \), doing synthetic division produces both \(q(x) \) and \(r(x) \). The Remainder Theorem, evaluated at \(c \), finds just \(r(x) \).